Hydrophobic Effects on a Molecular Scale
نویسندگان
چکیده
A theoretical approach is developed to quantify hydrophobic hydration and interactions on a molecular scale, with the goal of insight into the molecular origins of hydrophobic effects. The model is based on the fundamental relation between the probability for cavity formation in bulk water resulting from molecular-scale density fluctuations, and the hydration free energy of the simplest hydrophobic solutes, hard particles. This probability is estimated using an information theory (IT) approach, incorporating experimentally available properties of bulk water – the density and radial distribution function. The IT approach reproduces the simplest hydrophobic effects: hydration of spherical nonpolar solutes, the potential of mean force (PMF) between methane molecules, and solvent contributions to the torsional equilibrium of butane. Applications of this approach to study temperature and pressure effects provide new insights into the thermodynamics and kinetics of protein folding. The IT model relates the hydrophobic-entropy convergence observed in protein unfolding experiments to the macroscopic isothermal compressibility of water. A novel explanation for pressure denaturation of proteins follows from an analysis of the pressure stability of hydrophobic aggregates , suggesting that water penetrates the hydrophobic core of proteins at high pressures. This resolves a long-standing puzzle, whether pressure denaturation contradicts the hydrophobic-core model of protein stability. Finally, issues of " dewetting " of molecularly large nonpolar solutes are discussed in the context of a recently developed perturbation theory approach.
منابع مشابه
In Vitro Cytotoxic Activity and Binding Properties of Curcumin in the Presence of β-Casein Micelle Nanoparticles
Curcumin (CUR) is the active curcuminoid with many physiological, biochemical, and pharmacological properties. Solubility and stability of CUR is the limiting factors for realizing its therapeutic potential. Bovine β-casein is an abundant milk protein that is highly amphiphilic and self-assembles into stable micellar nanoparticles in aqueous solution. β-Casein nanoparticle can solubilize CUR mo...
متن کاملEffects of Dimethyl Sulfoxide and Mutations on the Folding of Abeta(25-35) Peptide: Molecular Dynamics Simulations
The 25-35 fragment of the amyloid β (Aβ) peptide is a naturally occurring proteolytic by-product of its larger parent molecule that retains the amyloid characteristics and toxicity of the full length parent molecule. Aggregation of this peptide occurs rapidly in aqueous solutions and thus characterization of its folding process is very difficult. In the present study, early stages of Aβ(25–35) ...
متن کاملCommon effects of acidic activators on large-scale chromatin structure and transcription.
Large-scale chromatin decondensation has been observed after the targeting of certain acidic activators to heterochromatic chromatin domains. Acidic activators are often modular, with two or more separable transcriptional activation domains. Whether these smaller regions are sufficient for all functions of the activators has not been demonstrated. We adapted an inducible heterodimerization syst...
متن کاملThe Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell
The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...
متن کاملInterplay between hydrodynamics and the free energy surface in the assembly of nanoscale hydrophobes.
Solvent plays an important role in the relative motion of nanoscopic bodies, and the study of such phenomena can help elucidate the mechanism of hydrophobic assembly, as well as the influence of solvent-mediated effects on in vivo motion in crowded cellular environments. Here we study important aspects of this problem within the framework of Brownian dynamics. We compute the free energy surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998